Object[Analysis, Fit]
Curve fitting analysis of connected {x,y} datapoints.
Organizational Information
Name
Name of this Object.
Format: Single
Class: String
Programmatic Pattern: _String
Pattern Description: A string.
ID
ID of this Object.
Format: Single
Class: String
Programmatic Pattern: _String
Pattern Description: The ID of this object.
Object
Object of this Object.
Format: Single
Class: Expression
Programmatic Pattern: Object[Analysis, Fit, _String]
Pattern Description: The object reference of this object.
Type
Type of this Object.
Format: Single
Class: Expression
Programmatic Pattern: Object[Analysis, Fit]
Pattern Description: Object[Analysis, Fit]
Notebook
Notebook this object belongs to.
Format: Single
Class: Link
Programmatic Pattern: _Link
Pattern Description: An object of that matches ObjectP[Object[LaboratoryNotebook]].
Relation: Object[LaboratoryNotebook][Objects]
Author
The person who ran the analysis.
Format: Single
Class: Link
Programmatic Pattern: _Link
Relation: Object[User]
General
UnresolvedOptions
The initial options entered into the analysis function that generated this object, along with the default values for any unspecified options.
Format: Single
Class: Compressed
Programmatic Pattern: {_Rule...}
ResolvedOptions
The final options used by the analysis function, after automatic options have been determined from the input and unresolved options.
Format: Single
Class: Compressed
Programmatic Pattern: {_Rule...}
Reference
The objects containing the source data used in this analysis.
Format: Multiple
Class: Link
Programmatic Pattern: _Link
Relation: Object[Qualification, PipettingLinearity][FittingAnalysis] | Object[Data, AbsorbanceSpectroscopy][AbsorbanceSpectrumPeaksSource] | Object[Data, AbsorbanceSpectroscopy][QuantificationAnalyses] | Object[Data, AbsorbanceSpectroscopy][SmoothingAnalyses] | Object[Data, AbsorbanceIntensity][QuantificationAnalyses] | Object[Data, AgaroseGelElectrophoresis][SampleElectropherogramPeaksAnalyses] | Object[Data, AgaroseGelElectrophoresis][MarkerElectropherogramPeaksAnalyses] | Object[Data, AgaroseGelElectrophoresis][PostSelectionPeaksAnalyses] | Object[Data, AgaroseGelElectrophoresis][SmoothingAnalyses] | Object[Data, Appearance, Colonies][ColonyAnalysis] | Object[Data, MeltingCurve][MeltingAnalyses] | Object[Data, MeltingCurve][FluorescenceSpectraAnalyses] | Object[Data, MeltingCurve][AggregationAnalyses] | Object[Data, MeltingCurve][ThermalShiftAnalyses] | Object[Data, BioLayerInterferometry][QuantitationAnalysis] | Object[Data, BioLayerInterferometry][KineticsAnalysis] | Object[Data, BioLayerInterferometry][BinningAnalysis] | Object[Data, BioLayerInterferometry][DetectionLimitAnalysis] | Object[Data, CapillaryGelElectrophoresisSDS][LadderAnalyses] | Object[Data, CapillaryGelElectrophoresisSDS][SmoothingAnalyses] | Object[Data, CapillaryGelElectrophoresisSDS][PeaksAnalyses] | Object[Data, CapillaryGelElectrophoresisSDS][RelativeMigrationPeaksAnalyses] | Object[Data, CapillaryGelElectrophoresisSDS][FitAnalyses] | Object[Data, CapillaryIsoelectricFocusing][SmoothingAnalyses] | Object[Data, CapillaryIsoelectricFocusing][PeaksAnalyses] | Object[Data, CapillaryIsoelectricFocusing][FitAnalyses] | Object[Data, Chromatography][StandardAnalyses] | Object[Data, Chromatography][FractionPickingAnalysis] | Object[Data, Chromatography][ConductancePeaksAnalyses] | Object[Data, Chromatography][AbsorbancePeaksAnalyses] | Object[Data, Chromatography][SecondaryAbsorbancePeaksAnalyses] | Object[Data, Chromatography][Absorbance3DPeaksAnalyses] | Object[Data, Chromatography][FluorescencePeaksAnalyses] | Object[Data, Chromatography][SecondaryFluorescencePeaksAnalyses] | Object[Data, Chromatography][TertiaryFluorescencePeaksAnalyses] | Object[Data, Chromatography][QuaternaryFluorescencePeaksAnalyses] | Object[Data, Chromatography][ScatteringPeaksAnalyses] | Object[Data, Chromatography][FIDResponsePeaksAnalyses] | Object[Data, Chromatography][ChargePeaksAnalyses] | Object[Data, Chromatography][SmoothingAnalyses] | Object[Data, Chromatography][pHPeaksAnalyses] | Object[Data, Chromatography][RefractiveIndexPeaksAnalysis] | Object[Data, Chromatography][CircularDichroismPeaksAnalysis] | Object[Data, Chromatography][MultiAngleLightScatteringAnalyses] | Object[Data, Chromatography][DynamicLightScatteringAnalyses] | Object[Data, ChromatographyMassSpectra][IonAbundance3DPeaksAnalyses] | Object[Data, ChromatographyMassSpectra][IonAbundancePeaksAnalyses] | Object[Data, ChromatographyMassSpectra][MassSpectrumPeaksAnalyses] | Object[Data, ChromatographyMassSpectra][AbsorbancePeaksAnalyses] | Object[Data, ChromatographyMassSpectra][Absorbance3DPeaksAnalyses] | Object[Data, ChromatographyMassSpectra][DownsamplingAnalyses] | Object[Data, ChromatographyMassSpectra][SmoothingAnalyses] | Object[Data, CircularDichroism][SmoothingAnalyses] | Object[Data, CircularDichroism][StructureQuantificationAnalyses] | Object[Data, DifferentialScanningCalorimetry][HeatingCurvePeaksAnalyses] | Object[Data, DifferentialScanningCalorimetry][SmoothingAnalyses] | Object[Data, DNASequencing][SequenceAnalyses] | Object[Data, DynamicFoamAnalysis][BubbleRadiusAnalyses] | Object[Data, FlowCytometry][FlowCytometryAnalyses] | Object[Data, FluorescenceKinetics][RateFittingAnalyses] | Object[Data, FluorescencePolarizationKinetics][RateFittingAnalyses] | Object[Data, LuminescenceKinetics][RateFittingAnalyses] | Object[Data, FluorescenceSpectroscopy][EmissionSpectrumPeaksAnalyses] | Object[Data, FluorescenceSpectroscopy][ExcitationSpectrumPeaksAnalyses] | Object[Data, FluorescenceSpectroscopy][SmoothingAnalyses] | Object[Data, LuminescenceSpectroscopy][PeaksAnalyses] | Object[Data, LuminescenceSpectroscopy][SmoothingAnalyses] | Object[Data, MeltingCurve][InitialIntensityPeaksAnalyses] | Object[Data, MeltingCurve][FinalIntensityPeaksAnalyses] | Object[Data, MeltingCurve][InitialMassPeaksAnalyses] | Object[Data, MeltingCurve][FinalMassPeaksAnalyses] | Object[Data, MeltingCurve][DynamicLightScatteringAnalyses] | Object[Data, FluorescenceThermodynamics][MeltingAnalyses] | Object[Data, MassSpectrometry][MassSpectrumPeaksAnalyses] | Object[Data, MassSpectrometry][SmoothingAnalyses] | Object[Data, Microscope][AdjustmentAnalyses] | Object[Data, Microscope][CellCountAnalyses] | Object[Data, Microscope][MicroscopeOverlay] | Object[Data, ImageCells][CellCountAnalyses] | Object[Data, ImageCells][MicroscopeOverlay] | Object[Data, Nephelometry][QuantificationAnalyses] | Object[Data, NephelometryKinetics][GrowthCurveAnalyses] | Object[Data, NephelometryKinetics][SolubilityAnalyses] | Object[Data, NMR][NMRSpectrumPeaksAnalyses] | Object[Data, NMR][SmoothingAnalyses] | Object[Data, NMR2D][NMRSpectrumPeaksAnalyses] | Object[Data, PAGE][LanePeaksAnalyses] | Object[Data, PAGE][LadderAnalyses] | Object[Data, PAGE][SmoothingAnalyses] | Object[Data, qPCR][QuantificationCycleAnalyses] | Object[Data, TotalProteinDetection][FitSourceSpectra] | Object[Data, TotalProteinDetection][MassSpectrumPeaksAnalyses] | Object[Data, TotalProteinDetection][LadderAnalyses] | Object[Data, TLC][LanePeaksAnalyses] | Object[Data, TLC][SmoothingAnalyses] | Object[Data, Volume][QuantificationAnalyses] | Object[Data, Western][FitSourceSpectra] | Object[Data, Western][MassSpectrumPeaksAnalyses] | Object[Data, Western][LadderAnalyses] | Object[Data, Western][SmoothingAnalyses] | Object[Analysis, MeltingPoint][TopBaseline] | Object[Analysis, MeltingPoint][BottomBaseline] | Object[Analysis, MeltingPoint][Thermodynamics] | Object[Analysis, QuantificationCycle][CopyNumberAnalyses] | Object[Analysis, QuantificationCycle][StandardCurveAnalyses] | Object[Analysis, Composition][StandardCurveFitAnalyses] | Object[Analysis, Ladder][StandardFit] | Object[Analysis, Thermodynamics][Fit] | Object[Analysis, Fit][ParallelLineAnalyses] | Object[Data, XRayDiffraction][StructureAnalyses] | Object[Data, XRayDiffraction][DiffractionPeaksAnalyses] | Object[Data, XRayDiffraction][SmoothingAnalyses] | Object[Data, IRSpectroscopy][AbsorbanceSpectrumPeaksSource] | Object[Data, IRSpectroscopy][SmoothingAnalyses] | Object[Protocol, FlowCytometry][CompensationMatrixAnalyses] | Object[Protocol, TotalProteinQuantification][QuantificationAnalyses] | Object[Data, CircularDichroism][CircularDichroismPeaksAnalysis] | Object[Data, DynamicLightScattering][MassDistributionAnalyses] | Object[Data, DynamicLightScattering][IntensityDistributionAnalyses] | Object[Data, DynamicLightScattering][DynamicLightScatteringAnalyses] | Object[DesignOfExperiment][DesignOfExperimentAnalyses] | Object[Protocol, ThermalShift][DynamicLightScatteringLoadingAnalyses] | Object[Protocol, DynamicLightScattering][DynamicLightScatteringLoadingAnalyses] | Object[Data, DifferentialScanningCalorimetry][Analyses]
ReferenceField
The field in the Reference object containing the source data.
Format: Single
Class: Expression
Programmatic Pattern: FieldP[Output -> Short]
DataPoints
List of {x,y} datapoints in the set (including outliers and excluded points).
Format: Single
Class: Compressed
Unit: ['None', 'None']
Programmatic Pattern: MatrixP[NumericP] | MatrixP[UnitsP[]] | MatrixP[NumericP | _?DistributionParameterQ] | _?QuantityMatrixQ
DataUnits
Units associated with the DataPoints used for fitting.
Format: Multiple
Class: Expression
Programmatic Pattern: UnitsP[]
Response
The actual y-values from the data points that were used in fitting analysis.
Format: Single
Class: Compressed
Programmatic Pattern: {_?NumericQ...} | _?QuantityVectorQ
Exclude
List of {x,y} datapoints excluded from the fit.
Format: Single
Class: Compressed
Unit: ['None', 'None']
Programmatic Pattern: MatrixP[NumericP] | {}
MinDomain
The minimum of the domain of values considered when calculating the fit. Any data points whose x-value is less than MinDomain is excluded from fitting.
Format: Multiple
Class: Real
Programmatic Pattern: NumericP
MaxDomain
The maximum of the domain of values considered when calculating the fit. Any data point whose x-value is greater than MaxDomain is excluded from fitting.
Format: Multiple
Class: Real
Programmatic Pattern: NumericP
Outliers
List of {x,y} datapoints identified as outliers.
Format: Single
Class: Compressed
Unit: ['None', 'None']
Programmatic Pattern: MatrixP[NumericP] | {}
SymbolicExpression
The symbolic expression representing the type of function used in this fit, with best fit parameters still represented as symbolic variables.
Format: Single
Class: Expression
Programmatic Pattern: Except[_String]
ExpressionType
The type of expression or function used to fit the provided data.
Format: Single
Class: Expression
Programmatic Pattern: FitExpressionP
DependentVariableData
The objects and respective fields containing the values that were transformed to create the dependent variable data.
Format: Multiple
[[1]] Object
Header: Object
Class: Link
Programmatic Pattern: _Link
[[2]] Field
Header: Field
Class: Expression
Programmatic Pattern: FieldP[Output -> Short]
[[3]] Transformation
Header: Transformation
Class: Expression
Programmatic Pattern: _Function|Identity
IndependentVariableData
The objects and respective fields containing the values that were transformed to create the first dimension of independent variable data.
Format: Multiple
[[1]] Object
Header: Object
Class: Link
Programmatic Pattern: _Link
[[2]] Field
Header: Field
Class: Expression
Programmatic Pattern: FieldP[Output -> Short]
[[3]] Transformation
Header: Transformation
Class: Expression
Programmatic Pattern: _Function|Identity
SecondaryIndependentVariable Data
The objects and respective fields containing the values that were transformed to create the second dimension of independent variable data.
Format: Multiple
[[1]] Object
Header: Object
Class: Link
Programmatic Pattern: _Link
[[2]] Field
Header: Field
Class: Expression
Programmatic Pattern: FieldP[Output -> Short]
[[3]] Transformation
Header: Transformation
Class: Expression
Programmatic Pattern: _Function|Identity
TertiaryIndependentVariable Data
The objects and respective fields containing the values that were transformed to create the third dimension of independent variable data.
Format: Multiple
[[1]] Object
Header: Object
Class: Link
Programmatic Pattern: _Link
[[2]] Field
Header: Field
Class: Expression
Programmatic Pattern: FieldP[Output -> Short]
[[3]] Transformation
Header: Transformation
Class: Expression
Programmatic Pattern: _Function|Identity
Analysis & Reports
BestFitFunction
Fit function that calculates the expected Y as a function of X, stored as a pure function.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
BestFitExpression
The symbolic expression with the best fit parameters replaced by their fitted values.
Format: Single
Class: Expression
Programmatic Pattern: Except[_String]
BestFitParameters
The unknown parameters from the SymbolicExpression along with their fitted values and standard deviations.
Format: Multiple
[[1]] Parameter Name
Header: Parameter Name
Class: Expression
Programmatic Pattern: _Symbol
[[2]] Fitted Value
Header: Fitted Value
Class: Real
Programmatic Pattern: NumericP
[[3]] Standard Deviation
Header: Standard Deviation
Class: Real
Programmatic Pattern: NumericP?NonNegative
BestFitParametersDistribution
The multivariate distribution describing the best fit parameters.
Format: Single
Class: Compressed
Programmatic Pattern: _MultinormalDistribution | _DataDistribution
MarginalBestFitDistribution
The marginal distribution describing the best fit parameters.
Format: Multiple
[[1]] Parameter Name
Header: Parameter Name
Class: Expression
Programmatic Pattern: _Symbol
[[2]] Fitted Distribution
Header: Fitted Distribution
Class: Expression
Programmatic Pattern: DistributionP[]
BestFitVariables
A list of the variables present in the BestFitExpression of the fit function.
Format: Multiple
Class: Expression
Programmatic Pattern: _Symbol
PredictedResponse
Predicted y-values when best fit function is applied to data x-values.
Format: Single
Class: Compressed
Programmatic Pattern: {_?NumericQ...} | _?QuantityVectorQ
BestFitResiduals
Difference between fit-calculated y-values and the actual y-values from the data points.
Format: Single
Class: Compressed
Programmatic Pattern: {_?NumericQ...}
Derivative
Derivative of the fitted function.
Format: Computable
Programmatic Pattern: _Function
Expression: SafeEvaluate[{Field[BestFitFunction]}, Computables`Private`derivativeComputable[Field[BestFitFunction]]]
CovarianceMatrix
Describes the sensitivity of the model to changes in the values of the fitted parameters, and is used in the calculation of model unertainty.
Format: Single
Class: Expression
Programmatic Pattern: SquareNumericMatrixP
HatDiagonal
Describes the influence each response value has on each fitted value, and is used in outlier detection. Also known as the influence matrix or the projection matrix.
Format: Single
Class: Compressed
Programmatic Pattern: {_?NumericQ...}
ParallelLineAnalyses
Parallel Line Analyses performed based on this fit analysis.
Format: Multiple
Class: Link
Programmatic Pattern: _Link
Relation: Object[Analysis][Reference]
Statistical Information
ANOVATable
The statistic table generfated by performing an ANOVA analysis.
Format: Single
Class: Expression
Programmatic Pattern: _Pane
ANOVAOfModel
The ANOVA results when source of variation is from the regression model.
Format: Multiple
[[1]] DF
Header: DF
Class: Real
Programmatic Pattern: NumericP
[[2]] Sum of Squares
Header: Sum of Squares
Class: Real
Programmatic Pattern: NumericP
[[3]] Mean Squares
Header: Mean Squares
Class: Real
Programmatic Pattern: NumericP
[[4]] F-Statistic
Header: F-Statistic
Class: Real
Programmatic Pattern: NumericP
[[5]] F-Critical (95%)
Header: F-Critical (95%)
Class: Real
Programmatic Pattern: NumericP
[[6]] P-Value
Header: P-Value
Class: Real
Programmatic Pattern: NumericP
ANOVAOfError
The ANOVA results when source of variation is from the residual error.
Format: Multiple
[[1]] DF
Header: DF
Class: Real
Programmatic Pattern: NumericP
[[2]] Sum of Squares
Header: Sum of Squares
Class: Real
Programmatic Pattern: NumericP
[[3]] Mean Squares
Header: Mean Squares
Class: Real
Programmatic Pattern: NumericP
ANOVAOfTotal
The ANOVA results when source of variation is from the original data.
Format: Multiple
[[1]] DF
Header: DF
Class: Real
Programmatic Pattern: NumericP
[[2]] Sum of Squares
Header: Sum of Squares
Class: Real
Programmatic Pattern: NumericP
FStatistic
F Statistic is calculated by performing a F hypothesis test, following the equation MSR/MSE where MSR is the regression mean square, MSE is the mean square error.
Format: Single
Class: Real
Programmatic Pattern: NumericP
FCritical
By default, it is the 95% critical value for the F-ratio distribution determined by the degrees of freedom in this object.
Format: Single
Class: Real
Programmatic Pattern: NumericP
FTestPValue
The cumulative probability beyond FStatistic for the F-ratio distribution.
Format: Single
Class: Real
Programmatic Pattern: NumericP
RSquared
R^2 value, also known as coefficient of determination, is a measure of how well the generated model fits its data.
Format: Single
Class: Real
Programmatic Pattern: NumericP
AdjustedRSquared
An adjustment to the R^2 value that penalizes additional complexity in the model.
Format: Single
Class: Real
Programmatic Pattern: NumericP
AIC
Akaike information criterion, a measure of the fit model's quality compared with other models.
Format: Single
Class: Real
Programmatic Pattern: _?NumericQ
AICc
Corrected Akaike information criterion, a measure of the fit model's quality compared with other models, corrected for small sample sizes.
Format: Single
Class: Real
Programmatic Pattern: _?NumericQ
BIC
Bayesian information criterion, a measure of a fit model's quality relative to other fit models, which penalizes model complexity more strongly than AIC.
Format: Single
Class: Real
Programmatic Pattern: _?NumericQ
EstimatedVariance
Estimate of the error variance, calculated by dividing the sum squared error by the degrees of freedom (difference between the number of data points and number of model parameters).
Format: Single
Class: Real
Programmatic Pattern: GreaterEqualP[0]
SumSquaredError
Sum of squared errors between fit-predicted and actual y-values.
Format: Single
Class: Real
Programmatic Pattern: GreaterEqualP[0]
StandardDeviation
StandardDeviation of the fit error, which is equal to the squre root of the EstimatedVariance.
Format: Single
Class: Real
Programmatic Pattern: GreaterEqualP[0]
MeanPredictionError
A function that computes mean prediction error from a given x-value. Mean prediction error is the expected error bewteen a predicted y-value and the average of repeated observations of that value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
MeanPredictionDistribution
A function that computes mean prediction distribution from a given x-value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
SinglePredictionError
A function that computes single prediction error from a given x-value. Single prediction error is the expected error between a predicted y-value and a single obersvation of that value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
SinglePredictionDistribution
A function that computes single prediction distribution from a given x-value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
MeanPredictionInterval
A function that computes a 95% confidence interval for a mean predicted value from a given x-value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
SinglePredictionInterval
A function that computes a 95% confidence interval for a single predicted value from a given x-value.
Format: Single
Class: Expression
Programmatic Pattern: _Function | _QuantityFunction
Standard Curve
PredictedValues
The objects containing values predicted by this standard curve function.
Format: Multiple
Class: Link
Programmatic Pattern: _Link
Last modified on Mon 26 Sep 2022 15:43:43